Sequestosome 1 Deficiency Delays, but Does Not Prevent Brain Damage Formation Following Acute Brain Injury in Adult Mice

نویسندگان

  • Anne Sebastiani
  • Christina Gölz
  • Philipp G. Sebastiani
  • Wiesia Bobkiewicz
  • Christian Behl
  • Thomas Mittmann
  • Serge C. Thal
  • Kristin Engelhard
چکیده

Neuronal degeneration following traumatic brain injury (TBI) leads to intracellular accumulation of dysfunctional proteins and organelles. Autophagy may serve to facilitate degradation to overcome protein debris load and therefore be an important pro-survival factor. On the contrary, clearing may serve as pro-death factor by removal of essential or required proteins involved in pro-survival cascades. Sequestosome 1 (SQSTM1/p62) is a main regulator of the autophagic pathway that directs ubiquinated cargoes to autophagosomes for degradation. We show that SQSTM1 protein levels are suppressed 24 h and by trend 5 days after trauma. In line with these data the expression of Sqstm1 mRNA is reduced by 30% at day 3 after and stays depressed until day 5 after injury, indicating an impaired autophagy post controlled cortical impact (CCI). To determine the potential role of SQSTM1-dependent autophagy after TBI, mice lacking SQSTM1 (SQSTM1-KO) and littermates (WT) were subjected to CCI and brain lesion volume was determined 24 h and 5 days after insult. Lesion volume is 17% smaller at 24 h and immunoblotting reveals a reduction by trend of cell death marker αII-spectrin cleavage. But there is no effect on brain damage and cell death markers 5 days after trauma in SQSTM1-KO compared with WT. In line with these data neurofunctional testing does not reveal any differences. Additionally, gene expression of inflammatory (Tnf-α, iNos, Il-6, and Il-1β) and protein degradation markers (Bag1 and Bag3) were quantified by real-time PCR. Protein levels of LC3, BAG1, and BAG3 were analyzed by immunoblotting. Real-time PCR reveals minor changes in inflammatory marker gene expression and reduced Bag3 mRNA levels 5 days after trauma. Immunoblotting of autophagy markers LC3, BAG1, and BAG3 does not show any difference between KO and WT 24 h and 5 days after TBI. In conclusion, genetic ablation of SQSTM1-dependent autophagy leads to a delay but shows no persistent effect on post-traumatic brain damage formation. SQSTM1 therefore only plays a minor role for secondary brain damage formation and autophagic clearance of debris after TBI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O12: The Heart and the Brain: Stroke Induced Heart Damage

Cardiac diseases are common post-stroke and are associated with increased morbidity and mortality. One possible mechanism of acute cardiac injury is the neurogenic myocardial damage, where the cerebral injury is disturbing the normal sympathetic and parasympathetic neuronal outflow to the heart leading to cardiac damage including myocardial infarctions. The exact mechanism is not completely und...

متن کامل

Role of morphine preconditioning and nitric oxide following brain ischemia reperfusion injury in mice

Objective(s): Morphine dependence (MD) potently protects heart against ischemia reperfusion (IR) injury through specific signaling mechanisms, which are different from the pathways involved in acute morphine treatment or classical preconditioning. Since opioid receptor density changes post cerebral ischemia strongly correlated with brain histological damage, in the present study, we tried to el...

متن کامل

P 5: The Effect of Previous Endurance Exercise in Traumatic Brain Injury

Introduction: It has been suggested physical exercise exerts neuroprotection in traumatic brain injury (TBI). However little information is available about the effect of endurance exercise on brain edema, inflammation and oxidant activity in diffuse TBI. Therefore, we investigated the prophylaxis effect of endurance training against oxidative damage, inflammation and brain edema assoc...

متن کامل

P 76: Assay of Alterations of Cytokines to Remedy of Traumatic Brain Injury

Traumatic brain injury (TBI) is a global health concern that typically causes emotional disturbances and cognitive dysfunction. It elicits a complex secondary injury response, with neuroinflammation as a crucial central component. Secondary pathologies following TBI may be associated with chronic neurodegenerative disorders and an enhanced likelihood of developing dementia-like disease in later...

متن کامل

ارتباط تغییرات آهن مایع مغزی نخاعی با آسیب مغز متعاقب ضربه مغزی در رت

Introduction: In Iran, thousands of young individuals become victims of head injury annually. Head injury can damage neuronal cells which may in turn complicate the recovery of the patients. Also, the increase of iron in cerebrospinal fluid (CSF) following head injury may contribute to the hypoxic-ischemia brain damage by catalyzing the formation of free radicals (Harber-Weiss Rection). The obj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017